PHYSICAL REVIEW E 79, 021307 (2009)

Clustering and phases of compartmentalized granular gases
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This paper experimentally investigates the clustering conditions for compartmentalized monodisperse granu-
lar gases, determining the critical particle number and condensation granular temperature at the gas-clustering
transition. When one heavier intruding particle is added to a monodisperse gas, it is found that the condensation
temperature decreases with the ratio of the mass of the intruding particle to that of the background particle.
This phenomenon can be mathematically characterized by a proposed linear relation, which is reminiscent of
a relation between the freezing point depression for a solvent and the concentration of an added solute. Finally
we perform various tests by changing the numbers of two types of particles in bidisperse granular mixtures to
construct the phase diagrams, which present the range of the five different states, namely, homogeneous gas,
unstable-gas, one-clustering, two-clustering, and granular oscillation states.
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I. INTRODUCTION

Granular materials play an important role in various aca-
demic and industrial activities and fields, including geophys-
ics, geology, geotechnical engineering, pharmaceutics, pow-
der metallurgy, and ground mining [1-5]. When granular
materials remain in a gaseous state, the most peculiar feature
that differentiates them from molecular gases is their ten-
dency to form highly concentrated and dilute regions [1,6,7].
This clustering, showing its diversity particularly in a verti-
cally oscillated compartmentalized system [8—14], originates
from the dissipation of energy from inelastic collisions be-
tween granular particles. Recent studies show that the clus-
tering in a compartmentalized bidisperse granular system is
able to oscillate as soon as moderate energy is imposed on
the system [15-18]. This oscillation is either called “granular
clock” for a two-compartment container or more generally
called “granular follower” for a multicompartment container
[19]. Experimental evidence shows that granular oscillation
comprises a series of two-stage performance: in stage I
lighter particles (LPs) are expelled by heavier particles (HPs)
and in stage IT HPs follow LPs[19].

Researchers have investigated the subject of granular os-
cillation using several approaches: (i) numerical studies that
employ two-dimensional (2D) molecular dynamics (MD)
simulation [15,16] or that simulate the proposed phenomeno-
logical flux modeling [ 18], (ii) experimental verifications in a
quasi-2D test with two types of particles of different sizes
[17] or in a 3D test with two types of particles of the same
size [18], and (iii) theoretical treatment through Kinetic
theory of gas [15]. These studies all contribute to a basic
knowledge of granular oscillation, and indicate that this os-
cillation behavior occurs within a limited range of param-
eters, such as input energy, container geometry, and the num-
ber and diameter of particles. In spite of these contributions,
there are still several unsolved issues that require detailed
investigation. These issues include the verification of
temperature-driven mechanism of granular oscillation [18],
the requirements for generating the oscillation, and the con-
struction of a complete phase diagram in the particle num-
bers of LPs and HPs.
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Since cluster formation of LPs in an empty compartment
is a necessary condition for generating the granular oscilla-
tion of a bidisperse gas in stage I, where LPs are expelled by
HPs [19], it is necessary to have a better understanding of the
critical conditions for the clustering of compartmentalized
granular gases. For cluster formation in compartmentalized
granular gases, several excellent works have been completed
over the past decade, such as the Maxwell-demon experi-
ment [9,20] and the bifurcation analysis [5,8,21]. According
to these studies, the symmetry breaking in compartmental-
ized granular gases can be analytically interpreted by the
phenomenological flux model [8] and by the hydrodynamic
treatment [21].

Concentrating on the conditions for generating granular
oscillation and the related temperature issue, this paper per-
forms three main tasks. First, the clustering conditions of a
monodisperse gas under different container geometric factors
are investigated by measuring the critical particle number at
the gas-clustering transition. Each critical particle number is
experimentally obtained from a bifurcation diagram, i.e., the
relation between the input energy and the particle proportion
in each compartment. By using the flux model, we deduce
the condensation granular temperature of a monodisperse gas
from this critical number information. Second, this study ex-
tends the analysis to an “M+11” gas, which is defined here
as a gas composed of a monodisperse gas and an intruding
larger particle. Results show that the condensation tempera-
ture changes with the mass of the additional particle, and this
change is reminiscent of the freezing point depression that
results from adding a small amount of solute into a solvent
[22]. Third, we construct the phase diagram in the numbers
of heavier and lighter particles, showing that there are five
states for a bidisperse two-compartmentalized system, i.e.,
homogeneous gas, unstable gas, one-clustering, two-
clustering, and granular oscillation states. The final section
summarizes the findings of this study.

II. EXPERIMENTAL DETAILS

Our experimental setup consists of nine acrylic containers
in rectangular shape (total height H=15.4 cm) with various
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TABLE 1. Geometric factors of acrylic containers used in the
experiments.

Container (Symbol) N, W(mm) D (mm) A (mm)
C1(0O) 3 22 7.5 30
C2(X) 2 2 75 30
C3(A) 2 35.5 7.5 30
C4(*) 4 22 7.5 30
C5(0) 3 22 5.5 30
c6(<0) 3 22 9.5 30
C7(+) 3 22 11.5 30
C8(x) 3 22 7.5 35
Cc9(V) 3 22 7.5 40

combinations of geometric factors (number of compartments
N,, compartment width W, container depth D, and barrier
height /), as presented in Table I. These containers with
equally divided two, three, or four compartments in the
width direction are tightly mounted on a shaker (VTS-65,
Aurora), which offers a vertical and sinusoidal oscillation.
The shaker’s frequency f is fixed at 20 Hz and its amplitude
is adjustable through the input signal controlled by a function
generator (SFG-2004, Good Will Instrument) and magnified
by an amplify (CE 1000, Harman International). The input
energy is represented by the dimensionless acceleration
I'(=4am’f*/g), where g denotes the gravitational accelera-
tion, and the output acceleration of the containers is moni-
tored by an accelerometer (ProBall IT General Balancer). The
following sections provide details on the spherical particles
used in each test.

III. PARTICLE NUMBER AND GRANULAR
TEMPERATURE FOR CLUSTERING
OF MONODISPERSE GASES

Most attention of the Maxwell-demon experiments has
been given to the construction of the bifurcation diagram,
exhibiting the relation between input energy and particle
number in each compartment. This study will take a further
step to obtain, from the bifurcation diagram, the critical
granular temperature at the phase transition between the
granular-gas state and the clustering state.

We begin the study of cluster formation from the con-
struction of the relation between input energy and particle
proportion in each compartment for a monodisperse gas. Fig-
ure 1 shows the experimental results for (a) the two-
compartment (2C) system, i.e., 65 steel balls of 2 mm diam-
eter in container C2, and (b) the three-compartment (3C)
system, i.e., 100 steel balls of 2 mm diameter in container
C1. Each point in Fig. 1 is obtained by recording the particle
number in each compartment after the system is subjected to
a specific I' value for 30 s and then returns to a static con-
dition. The value I was set in a decreasing manner from a
value greater than 12, or was set in an increasing manner
from zero. The chosen 30-s period was not critical for the
final record because we found that all the test for 15, 30, and
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FIG. 1. (Color online) Bifurcation diagrams for the two systems:
(a) 65 steel balls of 2 mm diameter in container C2 and (b) 100
steel balls of 2 mm diameter in container C1. The data points rep-
resented by the circles “°” are obtained by decreasing I from I’
> 12 and the triangles “A” are obtained by increasing I" from I
=0. The decreasing and increasing lines in each diagram, which are
obtained from an approximate average of each circular and triangle
point, respectively, almost overlap with each other, showing the
nonhysteretic nature of the two systems. The phase transition be-
tween granular gas and clustering states is defined as the moment
when 80% of particles cluster in one compartment.

60 s, respectively, resulted in the same particle distribution.
Figure 1 shows that no obvious hysteretic phenomena can be
observed in the 2C and 3C systems, which is different from
the experimental finding of van der Weele et al. [9] that the
cyclic three-box system exhibits a hysteretic bifurcation. The
reason for this difference could be attributed to the noncyclic
compartments for our 3C system.

As also illustrated in Fig. 1, there does not exist a sharp
transition between granular-gas and clustering states; the
former state refers to one in which particles are randomly
distributed in all compartments, and the latter to one in
which particles form a cluster in one compartment. Based on
our preliminary experimental observation that a cluster of
80% of the particles in the dynamical situation is more stable
and easier to distinguish from a cluster composed of smaller
proportion of particles, we define the gas-clustering phase
transition as the moment when 80% of the particles cluster in
one zone. With this definition, we perform a sequence of
tests that measure the critical particle number of a monodis-
perse gas at the gas-clustering transition. In each test with
fixed input energy, particles are added one by one into the

021307-2



CLUSTERING AND PHASES OF COMPARTMENTALIZED...

(a)

9 T T T

% 10 20 30 40 50

FIG. 2. (Color online) Relations between the input energy and
critical particle numbers for monodisperse gases from a granular-
gas state to a clustering state. Two kinds of gases with steel balls of
(a) 2 and (b) 4 mm in diameter are presented here. Different sym-
bols represent different containers.

compartmentalized system until they shift from a granular-
gas state to a clustering state. To assure the critical value of
particle number for each test, we conduct five times to obtain
their average. The test particles are spherical steel balls of
1.5, 2, 3, and 4 mm in diameter.

Let N denote particle number. Figure 2 shows the rela-
tions between the input energy and the critical particle num-
ber for various container factors and particle diameters,
where each data point in I'-N space is obtained from one
bifurcation diagram. In Fig. 2 each curve depicts the mini-
mum number of particles required to form a cluster. The
right-hand side of each curve represents the domain of the
clustering states, and the left-hand side that of the granular-
gas states. The subfigure identifies the size of the steel balls
used in the tests: (a) for 2 mm and (b) for 4 mm, and each
symbol represents the type of container indicated in Table 1.
The energy-particle number relations obtained by using steel
balls of 1.5 and 3 mm, which are not shown in the figure for
simplicity, share the same pattern with that in Fig. 2(a), i.e.,
from left to rightt C9—-C5—C2—C8—Cl1—C4—C3
— C6— C7. However, the case of 4-mm particles in con-
tainer C5 deviates from this pattern, as shown in Fig. 2(b).
This deviation could be explained by the fact that the small
ratio of container depth to particle diameter reduces the fre-
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quency of collisions, which leads to an increase in particle
number for clustering.

We observe from Fig. 2 that cluster formation requires
more particles as the particle size decreases. This is due to
the fact that the collision frequency for small-size particles is
lower than that for large-size particles under the same con-
tainer, particle number, and input energy, which results in
more particles required to dissipate energy in a small-size
particle system. In addition, Fig. 2 reveals the following fea-
tures that (i) with the same I', N, W, and D, the higher the
barrier, the fewer the particles are required for clustering; (ii)
with the same I, W, D, and h, the greater the number of
compartments, the greater the particle number required for
clustering; and (iii) when the values of the bottom areas of
two containers are close to each other, the greater the number
of compartments, the lower the particle number is required
for clustering.

The experimental data reveals not only the critical particle
number at the phase transition between granular-gas state
and clustering state of a monodisperse granular gas, but is
also able to provide useful information of this transition
while incorporating this data into an existing analytical ap-
proach. In the past, two elegant analytical approaches have
been proposed to study the feature of cluster formation in
compartmentalized granular gases, i.e., the flux model [8]
and the hydrodynamic treatment [21,23]. The basic differ-
ence between the two approaches is that in the flux model,
the temperature 7 is constant and the pressure p is changed
along the direction of container height; conversely, in the
hydrodynamic treatment, p is constant and 7 is changeable
with the distance from the vibrating wall. However, both
treatments have introduced a nonmonotonic function termed

ﬁE(n) in the flux model characterizing the particle flux, and
termed ﬁB(f) in the hydrodynamic approach characterizing
the pressure, such that it is possible to find F(n;)=F%(n,) [or

FB(&)=FB(&)] with n,#n, (or §#&) in a steady state.
Here, n; (n,) denotes the fraction of the total particle number
in the left (right) compartment, and & refers to the dimension-
less parameter, related to the particle number.

In order to explore the critical granular temperature, this
study follows the flux-model approach [12,13], and adopts
two assumptions for a monodisperse gas in granular-gas
state: (i) the particle number distribution obeys the baromet-
ric height relation and (ii) the velocity distribution of par-
ticles is Maxwellian and isotropic [13]. The barometric rela-
tion is the result of the ideal gas law, p=nkpT, and the
condition that the temperature 7 is independent of z, where z
is the position measured upwards from the container bottom.
The first assumption implies that the number density n de-
cays exponentially with the z direction, i.e., n(z)
=n(0)exp(—mgz/T), where m is the particle mass. Based on
this assumption and the condition () OHn(z)dz=N, we obtain
n(0)=mgN{,/QT, where Q(=N,WD) is the total of the bot-
tom areas of the compartments and the factor {; is given by
{=[1-exp(-mgH/T)]"'. When H—~ and g is finite, we
have g{; — g; whereas we have g{;, — T/mH when g— 0 and
H is finite. The second assumption allows us to associate the
z component of the particle velocity v with the granular tem-
perature T of the system through the relation <vf)=%(vz>
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=kpT/m, where the Boltzmann constant kz will be taken to
be 1 in the following analysis. It should be noted that even if
the two assumptions have been shown to be invalid [24], the
exponential distribution and the equal temperature compo-
nents roughly hold from molecular dynamics simulations of
a vertically vibrated granular gas [13]. Thus, the two as-
sumptions are only treated as a first approximation.

For simplicity, we assume that the restitution coefficients
of collisions between particle and particle e, and between
particle and container bottom e,, are equal, i.e., e,=e,=e.
We also assume a sawtooth motion of the container bottom
such that the container bottom has the upward velocity v,
=af (a: shaker’s amplitude; f: shaker’s frequency) as it col-
lides inelastically with particles [8,13]. Accounting for the
energies involved in a single particle-particle and container
bottom-particle collision [12,13], we are thus led to the rate
of input energy

Jo==(1-¢e*g{ ;N m—T+ le(l +e)u,mgN - (1)
20 2

and the rate of energy dissipation

(1- ez)dzggzNZ\r’% 2)
= o ,
where , is given by {,=[1-exp(—2mgH/T)]™', and d and p
are the particle diameter and mass density of particle, respec-
tively. In a special situation without gravity, i.e., g=0
(¢,,L,— ), the energy injection and dissipation expressed
in Egs. (1) and (2) will not vanish and approach certain val-
ues [21,23]. In the presence of gravity, we assume without
loss of generality that both {; and {, are 1. If the rate of
energy dissipation from particle-particle collision is balanced
by the rate of input energy supplied by container bottom-

4pn’/ag (10° 1/J)

particle collision for a monodisperse granular gas in
granular-gas state, i.e., Jy=0, then

I' 487
=, (3)
T ag
where
— 2
24(1-e)?(\Nm 1
=——| —d°N+ — 4
ﬁ e2p77d3 ( Q \"277) ( )

is a quantity, characterizing the ratio of the input energy and
the system’s kinetic energy. In the ideal case of elastic colli-
sion, e=1 gives rise to S=0, which implies T—, i.e., the
energy of the system increases continuously.

With the help of Eq. (3), replace the measure of the x axis,
i.e., particle number, in Fig. 2 by the quantity 437°/ag,
where the restitution coefficient is given by ¢=0.88 as ob-
tained from a drop test. Figure 3 displays the resulting ex-
perimental phase diagram of the gas-clustering transition,
which shows that for each case the transition is described by
a linear curve with a slope, having the physical meaning of
granular temperature 7. As in Fig. 2, the left side of each
curve represents the domain of granular-gas states, while
clustering states appear on the right side. In the procedure of
adding particles to the system, the granular-gas state of the
monodisperse gas evolves horizontally to the right until the
particles cluster. Specifically, as the number of particles in-
creases steadily, the granular temperature of the gas continu-
ously decreases to the critical temperature where the gas con-
denses.

Figure 3 shows that the granular temperature at the gas-
clustering transition, called the condensation temperature 7.,
increases as the particle diameter increases. This is obvious
since a particle with a larger diameter has a greater mass,
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FIG. 4. (Color online) Gas-clustering transitions in terms of I'
and 4B7F/ag. The results obtained from the nine different con-
tainers for each gas are merged into a group of straight lines, having
almost the same slope within the test range of input energy. Four
groups, respectively, represent the gases with steel balls of 1.5, 2, 3,
and 4 mm from right to left.

leading to a higher kinetic energy. For a specific monodis-
perse gas, Fig. 3 reveals several interesting experimental
findings. (i) Except for the case of 4 mm particles in a
5.5-mm-deep container, the orders in the magnitude of tem-
perature in the nine containers are almost the same for each
granular gas. (ii) A higher barrier, which more easily con-
strains the motion of particles within a compartment, leads to
a higher condensation temperature (see samples C1, C8, and
C9 with the same N, W, and D). (iii) Comparing samples C5
and C7 shows that container depth has little effect on the
transition temperature. (iv) With the same compartment
width as in samples C1, C2, and C4, particles in a container
with more compartments will cluster at a higher granular
temperature. (v) Under the same barrier height and approxi-
mately the same total compartment bottom area (), the sys-
tem with more compartments has a higher granular tempera-
ture at the transition (see samples C1 and C3, samples C2
and C5, or samples C4 and C6).

To aggregate various cases of different container geomet-
ric factors as a group, an additional dimensionless parameter
F[=N,(h/H)?] is introduced to accompany the quantity 8.
Figure 4, which uses 487°F/ag as the measure of the x axis,
displays an approximately common slope
T/F(=Tag/4BmF), for each granular gas in different con-
tainers within our test range of input energy. Four groups
with increasing order in their slopes correspond to gases with
steel balls of 1.5, 2, 3, and 4 mm. According to Fig. 4, a
greater number of compartments and a higher barrier height
both contribute to a higher gas-clustering transition tempera-
ture given a fixed particle number and total area of the com-
partment bottom.

IV. CLUSTERING OF THE M +I1 GASES

The phenomena involved in compartmentalized bidis-
perse gases are much more complex than those in monodis-
perse gases since different sizes or materials lead to more
complicated interactions between particles. Research on this
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TABLE II. Some material properties of the particles used in the
test.

Property Polypropene  Nylon  Glass  Steel  Bronze
plg/cm?] 0.9 1.14 2.50 7.92 8.90
e 0.9 0.95 0.92 0.88 0.78

subject can begin simply with an experimental investigation
on change in critical particle number at the gas-clustering
transition while adding one intruding particle into a mono-
disperse gas. This experiment uses the container C2 and per-
forms the transition test on the M +11 gases, whose the back-
ground particles of 2 mm in diameter can be glass beads or
steel balls, and the intruding particle of 4 mm in diameter is
polypropene ball, nylon ball, glass bead, steel ball, or bronze
ball. Table II lists the mass density p and restitution coeffi-
cient e of various particles used in this test.

For a monodisperse gas of 2-mm-glass beads, Fig. 5(a)
shows that adding one glass bead, steel ball, or bronze ball of
4 mm decreases the input acceleration (or energy) required
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FIG. 5. (Color online) Relation between input acceleration I"
and number of background particles Ny at the gas-clustering tran-
sition for the M+I1 gases, whose background particles are (a)
2-mm-glass beads and (b) 2-mm-steel balls. The original gases are
monodisperse, denoted by O and A, are added by one 4 mm in-
truding particle, which can be polypropene (Pp) ball, nylon (Ny)
ball, glass (Gl) bead, steel (St) ball, or bronze (Br) ball. Likewise,
the left side of each curve represents a domain of granular-gas
states, while clustering states are on the right side.
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for generating the gas-clustering transition. A heavier intrud-
ing particle (4-mm-bronze ball) causes a more pronounced
decrease than a lighter intruding particle (4-mm glass bead
or steel ball). However, this decrease changes to an increase
when adding a polypropene or nylon ball. Figure 5(b) shows
a similar result where the background particles are 2-mm
steel balls. This change in input energy is due to the fact that
a heavier particle with a larger mass has a larger kinetic
energy. Along with it comes an increase in inelastic colli-
sions in the system, causing the gas-clustering transition to
occur at a lower input energy.

Section III showed that each curve in the I'-N space, rep-
resenting the set of the critical points for the gas-clustering
transition, is associated with the 7. of a monodisperse gas. In
view of the granular temperature perspective, adding a larger
and heavier particle will result in a change (decrease or in-
crease) in T,, depending on the size, mass, and material prop-
erty of the intruding particle. This change is attributed to the
difference between the kinetic energy and dissipation energy
arising from the intruding particle, and is presumably domi-
nated by the mass ratio u and the restitution coefficients
between particles. Here, w is defined as the mass of the in-
truding particle m’ divided by the mass of a single back-
ground particle m". The experimental results in Fig. 5 im-
plicitly suggest that 7, decreases when u exceeds a certain
threshold value .

The phenomenon of a decrease in 7. of the granular gas is
reminiscent of the freezing point depression when a small
amount of solute is added to a pure solvent [22]. This de-
pression AT is determined by the relation ATy=K/c,, where
K; and c; are the cryoscopic constant and the concentration
of a solution, respectively. With reference to this relation, we
predict that the change in condensation temperature AT, can
be approximately given as

ATcch(M_/'Lth)’ (5)

where uy, is the threshold mass ratio and K, is a proportional
parameter. To confirm the validity of the prediction, we adopt
a hypothesis, which is similar to that employed in Sec. III,
that for a bidisperse granular gas, Q=J, holds at the granular
gas state. This hypothesis helps to extend Eq. (3) to

(af)?= 4T(1 - e)? ( Ve m N+ \’%M)z

e*(m Ny +myN,)?\ Q 2
(6)

for a bidisperse gas (which also hold for an M+I1 gas),
where

R —
(dy + dz)leNz\"mlmz(ml +1my)

\‘E(ml +1m,)

I —
a=dNiVm, + dsNo\m, +

[l

(7)

with m;, N;, and d; being the mass, number, and diameter of
the i-kind particle, respectively (i=1 or 2).

The above derivation has assumed that restitution coeffi-
cients for all collisions are equal to the same value e and that
the granular temperatures for both kinds of particles are the
same. Note, however, that equipartition of energy in bidis-

PHYSICAL REVIEW E 79, 021307 (2009)

8
A A 2mm-steel )
6 ® 2mm-glass s 4 ; m(10* kg)
4l Py e IR 2 3
— S RN
ql> 2 § A ‘\ 8 \.‘0
=)
-~ 0 T T T T T ' y
= ,[0 N \10\ 15 20 25 30
- e ° ~ - /’l
< 4 ~ N
6 RN
~
8l Se
-10 - *

FIG. 6. (Color online) Linear approximation for the change in
condensation temperature ATC(=T£—TJC"), and the mass ratio of in-
truding and background particles u(=m!/m™). Two types of back-
ground particles, namely, 2-mm-glass beads and 2-mm-steel balls,
are adopted. Every T, can be obtained in view of Eq. (6).

perse granular gases has been proved to be invalid, i.e., two
particle species have their own granular temperatures
[25,26], and the nonequipartition is strongly dependent on
the restitution coefficient and mass difference between par-
ticles [27]. But since we focus on how one single intruding
large particle into a monodisperse gas influences the aver-
aged temperature of all particles, for simplicity of analysis,
we still take the assumption that the temperatures are the
same and treat it only as an approximation.

Using Eq. (6), we evaluate the T,’s for those gases indi-
cated by the curves in Figs. 5(a) and 5(b). Let us classify
these gases into G2 type and S2 type, where the G2 type,
represented by the symbol “@” in Fig. 6, refers to the gases
whose background particles are 2-mm glass beads. Those
gases with background particles of 2-mm steel balls belong
to the S2 type, denoted by “A.” Figure 6 presents the linear
curve-fitting relation between ATC(zTI,—Tf_/’) and the mass
ratio u for each type of gas, where 7, and TZCW are the two
T,’s for a monodisperse gas with and without one intruding
particle, respectively. The two linear curves in Fig. 6, corre-
sponding to Eq. (5), reveal that K.=—4.46X 10 J and u,
=6.78 for the G2-type gases, and K,=—1.26X107®J and
mpn=3.55 for the S2-type gases. If we change the measure of
the x axis from the mass ratio to the mass of intruding par-
ticle, then the two straight lines, corresponding to the two
types of gases, can be obtained as also illustrated in Fig. 6,
which shows that the magnitude of change in 7, depends on
the mass of the intruding particle. Besides, the difference in
the threshold masses, indicated by the intercepts, should
come from the different natures of the background particles.

V. PHASE DIAGRAMS OF COMPARTMENTALIZED
BIDISPERSE GRANULAR GASES

A compartmentalized bidisperse granular gas exhibits sev-
eral extraordinary phenomena, including granular oscillation,
which are not easily explained by directly modifying the data
collected from a monodisperse gas. Based on experimental
observations, granular oscillation can take place if the fol-
lowing requirements are satisfied: (I) LPs can be expelled by
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FIG. 7. (Color online) Phase diagrams in the particle numbers of (a) 2-mm-steel balls versus 4-mm-steel balls (z=8), (b) 2-mm-glass
beads versus 4-mm-glass beads (#£=8), (c) 2-mm-glass beads versus 4-mm-steel balls (z=25.34), and (d) 2-mm-steel balls versus
4-mm-glass beads (z=2.53), where @ is the ratio for masses of a single heavier and a single lighter particles. The domain is primarily
divided by HS, US, OS, GS, and TS. The horizontal dash line indicates a borderline, above which the monodisperse gas comprised of LPs

can cluster in one compartment.

HPs, (II) LPs can cluster in an empty compartment, and (III)
HPs can be trapped by LPs (the abbreviations for HPs and
LPs have been noted in Sec. I). The Brazil nut (BN) effect or
reverse Brazil nut (RBN) effect is not necessarily responsible
for this oscillation [18,19].

To illustrate the conditions for generating granular oscil-
lation, we present four phase diagrams in the Ny—N; space
as shown in Fig. 7, where Ny and N; represent the numbers
of HPs and LPs, respectively. The heavier particles are 4-mm
glass beads or steel balls, whereas the lighter particles refer
to those in 2 mm. By using the container C2 and keeping
I'=6.44 (a=4 mm) fixed, we conduct a series of tests to
record the final state for each combination of Ny and N, after
a 3-min period of oscillation. The initial state for each test is
to randomly deposit the particles, since we found that chang-
ing any initial state has no influence on the final state. Each
diagram in Fig. 7 is constructed by all experimental data
points, which are obtained by adding LPs three by three into
the system, each time with a specific number of HPs. Be-
cause the same final state can be also obtained by changing
the procedure either by decreasing the number of LPs (e.g.,
from 350, 347, downward) or by adding HPs one by one into
the system with a specific number of LPs, it is concluded that
no hysteresis can be found between any two states.

Figure 7 displays five states of each binary mixture as
well as a dash line, called a “clustering line,” that indicates
the minimum particle number required for the corresponding
monodisperse gas of LPs to cluster in an empty compartment
(N =63 for 2-mm glass beads and N;=58 for 2-mm steel
balls). The five states are described below.

(i) Homogeneous-gas state (HS). In a dynamical situation,
with small numbers of HPs and LPs, particles randomly dis-
tribute themselves within the two compartments. In this
state, it is difficult to observe the difference of particle pro-
portions between the two compartments within a 3-min pe-
riod, i.e., particle numbers in the two compartments are sta-
tistically the same and no clustering tendency for particles
can be found. However, as soon as one turns off the shaker,
a deviation from the mean particle number is possible. The
HS state is analogous to the granular-gas state for I'>7.9 in
Fig. 1(a), where the values of particle proportion of a mono-
disperse gas in the two compartments can deviate from 1/2
and extend to a finite range.

(ii) One-clustering state (OS). In this state, a stable cluster
in one compartment can be observed, and over 80% of the
particles staying in one compartment can be measured after
the shaker is turned off.
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(iii) Granular-oscillation state (GS). LPs, expelled by
HPs in one compartment (e.g., zone I), cluster in the other
compartment (zone II) due to energy dissipation from inelas-
tic collisions. Afterwards, without the impediment of LPs,
the HPs in zone I gain sufficient energy to generate a flow of
HPs to zone II, which in turn are trapped by LPs in zone II.
The two stages recur, producing a granular oscillation.

(iv) Two-clustering state (TS). Due to large number of
particles, the balance of inflow and outflow from one specific
compartment gives rise to a two-clustering state, in which
particles cluster in both compartments.

(v) Unstable-gas state (US). This state, situated between
HS and GS (or OS) in Fig. 7, can be characterized by two
scenarios: (a) that even particles do not cluster, the difference
in particle numbers between two compartments is clearly
visible and (b) that LPs form an unstable clustering, i.e., the
clustering is apt to be broken up by incoming HPs.

Given that the number of LPs is sufficient, the possibility
can be entertained that LPs can not only cluster in an empty
compartment but can also trap HPs due to an increase in
collisions. Figure 7, showing that GS takes place only above
the clustering line, supports the need of the requirements (II)
and (III) for granular oscillation. The requirement (I) has also
shown its validity in Fig. 7 that granular oscillation cannot be
observed for small number of HPs and larger number of LPs
(dominated by OS), owing to the fact that HPs do not have
sufficient energy to expel LPs.

It is found that the phase diagrams in Figs. 7(a)-7(c) share
a similar topology, where the transition between TS and OS
in Figs. 7(b) and 7(c) occurs at a higher N,. For the case of
small mass ratio & in Fig. 7(d), GS state cannot be generated
even if we extend Ny to 48. In this case the BN effect is
clearly observed that most LPs are covered by HPs, imped-
ing the outflow of LPs. Furthermore, comparing Fig. 7(c)
with Figs. 7(a) and 7(b) finds that the distance between the
clustering line and the boundary between OS and US for
higher & is longer than that for lower . This corresponds to
the result obtained in Sec. IV that the change in AT, depends
on the mass of a larger particle added to a monodisperse gas.
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VI. CONCLUSIONS

This paper has conducted a series of experiments on the
phase transition of compartmentalized granular gases. By ac-
counting for the balance of input energy and dissipation en-
ergy in granular-gas state, we obtain the information of con-
densation granular temperature of monodisperse gases at the
gas-clustering transition from the experimentally measured
relation between the critical particle number and input accel-
eration.

For the M +11 gases, an interesting result is yielded that
there is an approximately linear relation (5) between the
change in condensation temperature AT, and the mass ratio
of the intruding and background particles. The experimental
data in this study identifies the proportional parameter K. and
the threshold mass ratio uy,, the latter of which depends on
the choice of background particles. This study manifests that
the macroscopic responses of a monodisperse granular gas
could be significantly different from those of the same gas
with only one intruding particle added.

Moreover, the experimental phase diagrams of bidisperse
granular mixtures in the space of numbers for heavier and
lighter particles are constructed. These diagrams, illustrating
the clustering line for LPs and the ranges of the five possible
states, namely, HS, US, OS, GS, and TS, manifest the nec-
essary requirements for generating the granular oscillation.

A final note about Fig. 7 is necessary here. If we add two
or more intruding particles to a monodisperse gas, the num-
ber required for clustering will still increase but in a slow
manner. The more intruding particles are involved, the more
collisions are incurred, hence complicating the interactions
among particles, such as the possibility of dual temperatures.
Our future work aims to deal with the subject of dual tem-
peratures, whose oscillation could be the mechanism of
granular oscillation [18].
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